
A FOUNDATION FOR NETWORKS OF TRUST

The White Paper
–

Anuj Das Gupta, Richard Caetano, Akbar Ali Ansari, Stephan
Florquin & Gordon Cieplak

2P R O O F O F P R O C E S S A B S T R A C T

Abstract

P roof of process is a protocol that allows participants to

trust a common process by decoupling the proof of data

from the actual source data in a way that yields a single

proof that represents all steps of the process.

A process is any sequence of steps in time. Whenever there is

a movement of information, ideas, conversations, goods or

products, there is a process.

Traditionally, when institutions want to share their set of

processes with one other, they must create common bridges to

share their data. Those bridges usually consist of APIs, firewalls,

and access management systems.

More and more organizations and individuals rely on these aging

bridges every day to handle data that governs the processes in

both their personal lives and business operations.

In this paper we provide a novel solution for sharing processes by

introducing a protocol for verifying the key factual elements of

every step in a process, enabling a solution through which trust

can be easily packaged, shared and demonstrated in a way that

enables traceability, compliance, privacy, and accountability.

3P R O O F O F P R O C E S S I N T R O D U C T I O N

Introduction

A process is a sequence of steps in which actors perform

specific actions at specific times relative to prior steps

or introduce new factual elements and process actors in

the sequence.

All steps need not include the same set of actors, and the

interaction between actors can be asynchronous as long as the

interactions can be grouped together into sequential steps.

Additionally, any step can fork into multiple branches without

any need to reconcile them into a single branch. There can be

parallel steps in different branches if they are performed at the

same time. As time always moves one direction, there can never

be circular steps within the same branch.

Examples of processes can be found in almost every human to

human and human to machine interaction. Just a handful of

examples from this ocean include:

1.	 Trade and settlement processes

2.	 Software as a Service (SaaS)

3.	 Online multi-player games

4.	 Board games like chess and Battleship

Everything is a process.

4P R O O F O F P R O C E S S B A T T L E S H I P : T H E P R O C E S S

Battleship:
The Process

Consider the board game battleship. In this game, there

are two players, who each have two 10x10 grids of cells

representing 2D coordinates, along with five ships. One

places his own ships on his primary grid, and uses a tracking grid

to record the results of his attacks on the opposing player’s ships.

The process of the game is as follows:

1.	 First, each player places his ships on his primary grid.

2.	 Each player then takes turns guessing the location of his

opponent’s ships, and the opponent announces whether or

not the location is occupied by a ship.

3.	 If it matches one of the opposing player’s ships’ positions,

then the opponent’s ship is “damaged”, which is indicated

through red pins on the respective tracking and ship grids.

4.	 If the guessed position does not match a ship, then a white

pin is placed to denote a miss.

5.	 Whoever is able to “sink” all of his opponent’s ships by

guessing all the correct ship positions first wins the game.

Fig. 1: Battleship. An example of how a Battleship game might appear
after several turns of play.

P L AY E R A

A B C D E F G H I

P R I M A R Y G R I D T R A C K I N G G R I D

1

2

3

4

5

6

7

8

9

10

J

P L AY E R B

Let’s say Alice and Bob are playing this game. Each Battleship

match represents a process, while each move represents a step in

that process.

In the first step, both Alice and Bob place their ships wherever

they like. From then on, Alice and Bob alternate turns of play

until a winner is established.

5P R O O F O F P R O C E S S B A T T L E S H I P : T H E P R O C E S S

Thus every step includes the following parameters:

•	 What is being guessed (ship coordinates)

•	 Who is guessing

•	 When the guess is made

•	 Where this guess lies in the total sequence of guesses

IMPLICIT CONDITIONS

In each step, each player needs to be able to trust that the other

player is not lying. Furthermore, each player should be able to

prove their move so that they can be rewarded with points for

scoring winning moves. And before we can declare the winner

of a game in a meaningful way, we need to be able to objectively

prove the validity of all the game’s steps.

Let’s say Alice wins the game. If Alice wants to use her score to

establish reputation, there is no easy way to demonstrate her

victory without publishing the record of the entire game along

with attestations for each move by an objective witness.

We can resolve this situation by imprinting the trust from an

objective witness into a signed receipt for the data in question,

so that the data with its receipt can be treated as a fact: digital

notarization. Therefore, we need a system underlying the

game through which each player can establish their moves

as objective fact.

One possible option is to notarize Alice’s moves as well as the

game’s outcome (her victory) and to then share that notarized

record as a standalone marker of trust. The game’s outcome

could then be considered a fact.

Furthermore, we can demonstrate the veracity of the game’s

outcome in a decoupled and modular way if we can share the

trust established between Alice and Bob in their game-play

through a package with the following conditions:

•	 Anyone can open the package to verify the outcome of

the game

•	 No player must reveal their guesses or ship positions

•	 There is minimal involvement of the source of trust

Such an option is possible through the construction of a proof

system, which we will discuss in the next section.

6P R O O F O F P R O C E S S K E Y C O N C E P T S

Key Concepts

TYPES OF FACTS

Before we begin to construct a decoupled, modular proof system,

let us examine the nature of the facts with which we will be

working.

Facts are statements that represent reality. In order to label a

statement as a fact, an honest inquirer must carry out a fact-

checking experiment to verify if the statement indeed represents

reality accurately. If the experiment yields a positive result,

then the statement is qualified to be labelled as a fact. These are

known as a posteriori facts. Scientific and empirical facts with

experimentation as their basis of fact-checking are also examples

of a posteriori facts.

However, there is another type of fact: a priori.

A priori facts represent reality that cannot be experimentally

tested, such as the mathematical fact of “2 + 2 = 4”. Indeed, a fact-

checking procedure would represent a deductive logic following

the rules of decimal computation.

Apart from a posteriori and a priori facts, we also need to

establish facts in places and situations in which fact-checking

cannot take place. In the inner world of feelings we have to

depend on a source of trust, e.g. the person telling us how she

feels, or a source of authority attesting a claim.

Another example includes the facts of who made which move

and who won at the end of a game of Battleship. It is both

computationally and experimentally impossible to fact-check

if both players have conspired together to make up false moves

in a logically consistent way. We refer to these kinds of facts as

subjective facts.

FACTS IN DIGITAL SYSTEMS

In the context of digital systems, facts are either computationally

verifiable datasets (a priori facts) or trusted datasets (a posteriori

and subjective facts).

7P R O O F O F P R O C E S S K E Y C O N C E P T S

With a priori facts, digital systems can compute a fact-checking

algorithm to establish if the statement is indeed a fact. For

example, an algorithm can check if the number of coins going

into a transaction equals the number coming out. Any kind of

computation to verify an a priori fact will be deterministic in

nature. However, for a posteriori and subjective facts, we must

depend on some source of trust in place of experimental or

computational fact-checking.

A posteriori facts, in digital systems, being models of reality,

cannot be fact checked through experimentation. So, we need a

source of trust to attest a dataset as a fact, in the same manner

as subjective facts. Once a fact has been attested, a proof system

can then be used to demonstrate the trust that was the origin of

the attestation of the fact. The trust source could be a centralized

authority, such as a governing body, or a decentralized network of

consensus such as the authority of ancient traditions or that of a

blockchain timestamp server.

In this paper, we do not seek to establish trust, which, as we

have seen, can be done either through fact-checking, signed

attestation from a source of trust, or decentralized consensus.

We will instead focus on building a proof system which can be

used after the establishment of facts to demonstrate the trust at

their origin.

PROOF SYSTEMS

A proof system enables one party, called a prover, to exchange

messages with another party, a verifier, in order to convince the

verifier that the subject of the proof is true — within the context

of their mutually agreed upon source of trust.

There can be two kinds of proof systems.

For a posteriori and subjective facts a proof system can be made

to establish a protocol to capture enough information from a

process in order to build a proof that can demonstrate the trust

that established the process in the first place.

Fig. 2: A Proof System.

8P R O O F O F P R O C E S S K E Y C O N C E P T S

A priori facts, being computationally verifiable, can be validated

through the execution of code. Thus, the validation logic acts as

the proof system.

For the purpose of this paper, we will only focus on the former:

proof systems for a posteriori and subjective facts. And we are not

checking if the facts were established in an honest way.

That said, we enable a proof system that can demonstrate the key

factual elements of each step in a process with established facts

in a decoupled and modular way.

9P R O O F O F P R O C E S S D E S I G N R A T I O N A L E

Design Rationale

In the example just described, there is the actual process (the

game being played) where Alice and Bob each make their

own guesses.

Then there is the proof of that process. This proof is derived by

extracting just enough information from each step of the actual

process, without including the actual guesses, in order to build

cryptographic proofs that can be used to verify the integrity of

each step by an objective party.

To build these proofs it is necessary to address key information

security concerns by establishing key factual elements within

the proofs.

KEY INFORMATION SECURITY CONCERNS AND
FACTUAL ELEMENTS

1. Data Integrity
The information content of a step in the process must correspond

exactly to its intended step in the recorded process in way that

proves there has not been any corruption or data tampering. This

demands a proof to demonstrate the factual element of what is in

a step.

2. Actor Non-Repudiation
The actors responsible for a step in the process must be recorded

in such a way that the source of the information content of a

step cannot be repudiated. This demands a proof of the factual

element of who acted in a step.

3. Proof of Anteriority
The time at which a step in a process occurs must be provable.

This demands a proof to demonstrate the factual element of

when a step happened.

4. Proof of Context
Where the step belongs relative to the context of all other steps in

a process must be unquestionably demonstrable. This demands

a proof to demonstrate the factual element of where a step

happened.

10P R O O F O F P R O C E S S D E S I G N R A T I O N A L E

It is possible to create a single proof for each step of the process

by consolidating the individual proofs for each of the four

information security concerns into a single proof for each step.

Once we have a single proof for each step, we can then

consolidate these again into a single proof for the entire process.

11P R O O F O F P R O C E S S D A T A I N T E G R I T Y

Data Integrity

In information security systems, data integrity implies

the maintenance and assurance of the accuracy and

completeness of data over the system’s life cycle. This

means that the users should be able to prove that data

has not been modified in an unauthorized or undetected

manner. The most common tool to accomplish this is the

cryptographic digest.

Let’s return to our Battleship game. Let’s say the first move by

Alice is “D10”.

To create a digest of Alice’s first move, we will pass the string

“D10” through a cryptographic hashing algorithm such as SHA-

256 to generate a digest and then store the digest in the step1 of

the process graph. Alice can record her actual guess separately as

it does not need to be part of the proof of process; we only need to

store the document digest. She gets to keep her guesses secret —

or at least between her and her opponent1.

As the digest will be unique for that specific guess, we can then

use it to prove that the guess is legitimate, or that this indeed is

the correct guess that we are looking for. If the veracity of a digest

in a step were challenged, Alice could use her secret guess to

re-generate the digest, thus demonstrating that there is a match

between the generated digest and the digest within the step

recorded in the process graph. In this way, Alice can demonstrate

proof of the factual element of what has happened.

Fig. 3: Cryptographic Digests. A cryptographic digest process takes plain
text and generates a string unique to that input text, which acts
as a digital fingerprint.

12P R O O F O F P R O C E S S A C T O R N O N - R E P U D I A T I O N

Actor Non-
Repudiation

Non-repudiation implies that the sources of the

information content of each step in a process should

not be able to deny their involvement with the steps

that represent their data through the digests. The tool we

will use to address this is the digital signature.

Fig. 4: Digital Signature Creation. First, one creates a split key pair – a
private key with its corresponding public key – using a PKI system. Then
one uses a signing algorithm to generate a signature from the private
key and cryptographic digest.

Fig. 5: Digital Signature Validation. The corresponding public key can
then be used to verify if the signature matches the digest. However,
the public key cannot be used to “sign” the digest, nor can it be used to
recover the private key.

13P R O O F O F P R O C E S S A C T O R N O N - R E P U D I A T I O N

Non-repudiation implies that the sources of the information

content of each step in a process should not be able to deny their

involvement with the steps that represent their data through

the digests. The tool we will use to address this is the digital

signature.

14P R O O F O F P R O C E S S P R O O F O F A N T E R I O R I T Y

Proof of Anteriority

Proof of anteriority implies the ability to prove when a piece

of information was certified or signed. To enable this, it is

necessary to be able to prove when the signature occurred,

as keys or the document behind the digest step could expire.

Thus, the validity of a piece of information is dependent on time.

So, we must introduce the parameter of time into our proof in a

secure way.

To reflect the linear arrow of real time in our system, we must

ensure that once a step is performed, it cannot be reverted back

to its previous state that only new steps can be added and older

steps are never removed. Steps must be immutable.

If the time the step occurred is included through a digital

signature, it must reflect the real time. The recorded time must

not be able to be changed at a later date — this should invalidate

the signature of the step.

We can obtain the time from a trusted time source that uses

digital signatures to attest the time before it is finally recorded in

the step. Doing so makes the time neutral to all the actors within

the process. This is referred to as trusted time-stamping. In this

way, we are able to demonstrate the when of a step.

Fig. 6: Trusted Time-Stamping. The proof
system obtains the current time from a
trusted source and uses that timestamp along
with the plaintext document to generate a
cryptographic digest, which is immediately
signed by the trusted source (using its private
key) to create a time-stamped signature.

15P R O O F O F P R O C E S S C O N T E X T U A L P R O O F

Contextual Proof

So far, we have covered methods to establish the what (with

a cryptographic digest), the who (a digital signature), the

when (trusted timestamp) — now we need to establish the

where, or the context of a step relative to the others.

We do this by establishing contextual (and cumulative) proof

using a hash chain.

First, we create another digest for the entire step (the digest,

signature, and timestamp, so far), which we can call a link hash.

Then we insert that link hash into the following step of the

process along with the digests of the other key factual elements.

CUMULATIVE PROOF

By including the proof of its previous step, every step in effect

contains the proof of all its previous steps, forming a cumulative

proof. Thus, we have a chain of cumulative proofs to ensure the

contextual proof.

By sharing a cumulative proof of a specific step, we share the

proof of all its previous steps as well. Alice can just carry the

Fig. 7: Contextual Proof via Hash Chain. The digest of the content of
each step is included in the following step, cryptographically linking
every step of the process. By including the link hash of the previous step,
we establish a clear and provable step sequence, and thus proof of the
context of all steps. With the exception of the first, a new step simply
cannot be created if there is not a previous one to reference.

16P R O O F O F P R O C E S S C O N T E X T U A L P R O O F

digest of the final step — which is effectively proof of all the steps

of her Battleship game.

Cumulative proofs are tamper-proof — to change the result of

one, you would have to go all the way back to the first step to

change the proofs in all previous steps, which would in turn

invalidate the entire process.

In this way, we are able to demonstrate the where of a step.

NESTED PROOFS OF PROCESSES

As the proof of an entire process can be represented by the digest

of the final step, we could include the proof of one process inside

a step in another proof of process graph. The link hash of the

final step of the outer process graph would thus demonstrate

both proofs of its steps, as well as proof of the steps of the inner

process graph.

In this way, we can seamlessly connect multiple processes.

For example, the proof of Alice’s Battleship victory could be

connected to the proof of her victory in a Backgammon game

to establish a reputation profile in a network of board game

enthusiasts who wish to assert their refined taste in an era of

rapid-fire, deliberately addicting console and mobile games.

DEFINING ANTERIORITY AND CONTEXT:
COMMON TIME

In this paper we have used examples of individual sources of

trust for timestamping. However, the factual element of when

(and thus, where) can also be established through consensus on a

common timeline.

A common timeline can be established through a blockchain

network in which participants agree to contribute computational

power through a clearly defined consensus logic for the

acceptance of new blocks (process steps) of information that

define the when and where of a proof of process graph.

Read more about blockchain consensus logic mechanisms:

bitcoin whitepaper, proof of work, proof of stake.

17P R O O F O F P R O C E S S B U I L D I N G T H E P R O O F O F P R O C E S S

Building the Proof
of Process

STEP 1: INITIAL STATE

At the beginning of the game, we store the digest of the position

of the player’s ships, both players’ signatures, and the trusted

timestamp. This is the first step of the process graph. The actual

data behind the digest — the ship’s positions — can be stored by

each player separately however they prefer.

STEP 2: ALICE GUESSES

Alice makes her first guess: she calls out “D10.” We record the

digest of the string “D10,” timestamp it, sign it, and link it to the

first step. Thus the second step contains:

1.	 The digest of the string: ”D10”

2.	 Alice’s timestamped signature of the digest 3. Alice’s public

key

3.	 The timestamp authority’s public key

4.	 The link hash of the first step

STEP 3: BOB RESPONDS

Bob responds “it’s a hit!” He puts a red pin on top of the ship at

D10 of his primary grid, indicating that Alice scored a hit, and

Alice places a pin in the same position on her tracking grid. We

record the digest of the string “hit” along with the time when Bob

responded, and obtain signatures from Bob for digest and the

source of trust for the timestamp. Thus in the third step, we save:

1.	 The digest of the string “hit”

2.	 Bob’s timestamped signature of the digest 3. Bob’s public key

3.	 The timestamp authority’s public key

4.	 The link hash of the second step

GOING FORWARD

The second and the third step form the first couplet of this

instance of the proof of process graph. In the following couplet,

they reverse their roles: Bob will guess and then Alice will

respond, forming the fourth and the fifth steps, respectively. This

goes on until one of the players has sunk all the other’s ships,

making the survivor the winner.

18P R O O F O F P R O C E S S B U I L D I N G T H E P R O O F O F P R O C E S S

In the final couplet, when Alice makes her winning move, Bob

responds with “hit.” We store the details for that couplet, and

additionally, we record an extra step as the final step which

contains:

1.	 The digest of the string “endgame”

2.	 Both Alice and Bob’s timestamped signatures of that digest

3.	 Alice’s public key

4.	 Bob’s public key

5.	 The timestamp authority’s public key

6.	 The link hash of the previous step (where Bob replied

with “hit”)

The proof of process graph of all the steps must be recorded by

a computing platform common to both the players in a way that

each time a player guesses or responds, it can compute the proof.

Computing the proof for each step involves hashing the guess/

response, getting the players to sign their respective guesses/

responses, time-stamping the guess/response, and connecting

every new step in the graph with the link hash of the previous step.

The computing platform can publish the hash of the final step

of “endgame,” which acts a proof for the entire game, without

the need to share any other proof. Each step of the entire process

graph can be uniquely referenced through the final link hash, so

participants on a network of board game enthusiasts only need to

share final hash with others as a proof of the game’s history.

19P R O O F O F P R O C E S S Z E R O K N O W L E D G E P R O O F O F P R O C E S S

Zero Knowledge
Proof of Process

Now that we have the proof of process (demonstrating

Alice’s victory) decoupled from the actual process (the

private record of Alice’s guesses and responses), there

remains a need to publish the process graph of cumulative proofs

in a way that the proof can be publicly verifiable — without

revealing the source data behind the proofs. This way, everyone

can credibly believe Alice’s refined taste and skill in gaming

without any knowledge of her unique ship placements and

guessing strategies that secured her victories.

To enable this hypothetical reputation network of gamers with

taste, we need to enable a shareable record of winnings and

scores for each gamer. We can start by using the proof of process

to verify the integrity of each game being played. However, to

make sure that any set of two players do not make up fake games

for reputation, or that gamers don’t make up fake players to set

up easy victories, we need to introduce referees sitting in each

game. These could be professional Battleship referees, or simply

gamers not currently playing who want to earn good karma and

get a foot in the door of the competitive Battleship scene.

If there is a referee attesting each move of a game, and thus

each step of a process graph, then we can use a “two out of three

signings” approach to establish the truthfulness of a step. The

three in this case would be: Alice, Bob and the referee. Alice can

now present the proof of process to anyone else for verification,

and they can just check the “two out of three signings” for

verification that a neutral 3rd party attested the game’s events.

For a peer-to-peer system of interaction like that of Alice and

Bob, we need a third person to act as an arbitrator. However, for

a system in which the parties are hierarchically organized, we do

not always need a third party.

KYC – KNOW YOUR CUSTOMER

Let’s imagine that Alice has been so successful at playing

Battleship that she now must open a bank account because she is

running out of space to store her winnings in her Manhattan studio

apartment. She naturally chooses the bank that has been running a

campaign advertising their implementation of Proof of Process.

20P R O O F O F P R O C E S S Z E R O K N O W L E D G E P R O O F O F P R O C E S S

Before she can deposit her winnings, however, she must first go

through a mandatory “Know Your Customer” (KYC) process. As

part of this government-mandated process, Alice must share her

private documents (e.g. birth certificate) with the bank to prove her

identity and financial well-being. In this situation the bank acts as

the arbiter of Alice’s identity, financial health, and other pieces of

information. Therefore the bank is also the source of trust.

Thus, just two parties — Alice and the bank — are sufficient to

generate a proof of process in the context of a process within a

hierarchical system.

The bank validates each of Alice’s documents and attests them

through steps in the proof of process graph with its signature, and

then adds one more step: Alice’s customer status is verified and

her bank account is open.

Finally, Alice can deposit her winnings — and additionally, she

receives a special token from the bank! It contains the digest of

the final step of her KYC proof of process graph. And it’s a good

thing too, because this bank has a monthly deposit limit and she

can only deposit half of her cash from the Battleship winnings.

She’s asked her friend Bob to take care of her plants in her

apartment this month while she’s out of town and is not sure it’s

a good idea to keep all that cash around. Bob’s new career as a

gardener hasn’t yielded the riches of the Battleship game, and she

thinks he might be tempted pad his gardening fees.

Luckily, there’s another Proof of Process-enabled bank around

the corner, and she is able to skip the time consuming KYC

Fig. 8: Hierarchical and Peer-to-Peer Systems. Most organizations
function through hierarchical structures in which multiple parties
are grouped under the same head, whereas in peer-to-peer systems,
information is shared sideways and directly between its members,
making the exchange often considerably faster. However, in peer-to-
peer systems, trust becomes more challenging to ascertain without a
single source of trust like that of the head a hierarchical system.

21P R O O F O F P R O C E S S Z E R O K N O W L E D G E P R O O F O F P R O C E S S

process and immediately open an account with them just by

presenting the token — the digest from the first bank. She is able

to deposit the rest of her winnings and confidently give Bob the

keys to her apartment while she is away for the international

Battleship championship. She can rest easy knowing her money

and plants are in good hands.

With this example, Alice is able to prove her integrity established

in the first bank’s KYC process to the second bank without having

to reveal her private documents again, and with the “two of three

signings” Battleship example, she is able to prove the results

of her games without having to reveal her secret guesses and

ship positions. These are examples of zero-knowledge proofs of

process in a hierarchical and peer-to-peer system, respectively.

Proof of process does not necessitate, but it does provide a

framework to enable zero-knowledge proof. In this way, we can

enable individual privacy on the protocol level.

Through Proof of Process, both peer-to-peer and hierarchical

systems can interact and exchange information in a way that

each system can utilize its own source(s) of trust, thus enabling a

decoupled and modular trust network.

Fig. 9: Zero-Knowledge Proof. If we do not store any secret behind the
proof, but only the key factual elements to enable the proof (those being
the digest, signature, public key and the trusted timestamp) while still
ensuring that the proof can be demonstrated to any verifier, then we
have a zero-knowledge proof of process.

P R O O F S (G R A P H S E G M E N T S & S E C R E T D ATA)

22P R O O F O F P R O C E S S C O N C L U S I O N

Conclusion

L et’s recount the steps that we’ve taken to create a proof

of process.

•	 Extract trust by deriving proofs of the four key factual

elements to address the four information security concerns

for each step of the process:

	 What: data integrity through cryptographic hashing

	 Who: actor non-repudiation through digital signatures

	 When: proof of anteriority through trusted time-stamping 	

	 or common time

	 Where: proof of context through cumulative proof via

	 hash chain

•	 Generate a single proof for each step

•	 Publish the final proof in a distributed fashion through a

network in which truth is established through a consensus

mechanism

We’ve covered the first two steps in some detail while the

third has been implied in our examples of tasteful gamers

and technologically progressive banks. The fact remains that

proofs are only useful if people accept them through usable

networks. Proof of Process only functions in a situation of human

collaboration and technical implementation.

This human reality is also the fifth factual element that does not

belong to any step in a process, but to the entirety of Proof of

Process: why.

The previous four key factual elements enable the conditions to

address the factual element of why through Proof of Applicability:

Why does this proof apply to me? Using this element, the proof

must be established in the interpersonal human context of trust

— through a network of trust.

Because people are naturally curious about why things are the

way they are and most developed countries have abundant access

to relatively inexpensive computational power and connectivity,

this fifth element is also why people have a strong incentive to

build and participate in networks through this protocol. PoP

serves as a powerful lens to discover the truth behind situations,

23P R O O F O F P R O C E S S C O N C L U S I O N

as traceability, compliance, privacy, and accountability have

been enabled at the protocol level.

In today’s hyperconnected world, there are no islands, only

continuous movements of information, ideas, conversations,

goods, and products. There must be a strong foundation of trust

to make this movement possible. Through the Proof of Process

protocol it is possible to establish networks that manage trust

in a decoupled and modular way, and to thus create a new

paradigm for communication, collaboration, exchange,

regulation, and governance.

–

This paper was written by the Stratumn team in collaboration

with their customers and partners, and published May 10, 2017.

Its authors are Anuj Das Gupta, Richard Caetano, Akbar Ali

Ansari, Stephan Florquin and Gordon Cieplak.

